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Abstract  An open research question is how to define a useful metric on SE(n)
with respect to (1) the choice of coordinate frames and (2) the units
used to measure linear and angular distances. A technique is presented
for approximating elements of the special Euclidean group SE(n) with
elements of the special orthogonal group SO(n+1). This technique is
based on the polar decomposition (denoted as PD) of the homogeneous
transform representation of the elements of SE(n). The embedding of
the elements of SE(n) into SO(n+1) yields hyperdimensional rotations
that approximate the rigid-body displacement. The bi-invariant metric
on SO(n+1) is then used to measure the distance between any two
spatial displacements. The result is a PD based metric on SE(n) that is
left invariant. Such metrics have applications in motion synthesis, robot
calibration, motion interpolation, and hybrid robot control.
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1. Introduction

Simply stated a metric measures the distance between two points in
a set. There exist numerous useful metrics for defining the distance be-
tween two points in Euclidean space, however, defining similar metrics
for determining the distance between two locations of a finite rigid body
is still an area of ongoing research, see Kazerounian and Rastegar, 1992,
Martinez and Duffy, 1995, Larochelle and McCarthy, 1995, Etzel and
McCarthy, 1996, Gupta, 1997, Tse and Larochelle, 2000, Chirikjian,
1998, Belta and Kumar, 2002, and Eberharter and Ravani, 2004. In
the cases of two locations of a finite rigid body in either SE(3) (spatial
locations) or SE(2) (planar locations) any metric used to measure the
distance between the locations yields a result which depends upon the
chosen reference frames, see Bobrow and Park, 1995 and Martinez and
Duffy, 1995. However, a metric that is independent of these choices,
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referred to as being bi-invariant, is desirable. Interestingly, for the spe-
cific case of orienting a finite rigid body in SO(n) bi-invariant metrics
do exist.

Larochelle and McCarthy, 1995 presented an algorithm for approxi-
mating displacements in SE(2) with spherical orientations in SO(3). By
utilizing the bi-invariant metric of Ravani and Roth, 1983 they arrived
at an approximate bi-invariant metric for planar locations in which the
error induced by the spherical approximation is of the order "F%j, where
R is the radius of the approximating sphere. Their algorithm for an
approximately bi-invariant metric is based upon an algebraic formula-
tion which utilizes Taylor series expansions of sine() and cosine() terms
in homogeneous transforms, see McCarthy, 1983. Etzel and McCarthy,
1996 extended this work to spatial displacements by using orientations in
S0(4) to approximate locations in SE(3). This paper presents an alter-
native approach for defining a metric on SE(n). Here, the underlying geo-
metrical motivations are the same- to approximate displacements with
hyperspherical rotations. However, an alternative approach for reaching
the same goal is presented. The polar decomposition is utilized to vield
hyperspherical orientations that approximate planar and spatial finite
displacements.

2. The PD Based Embedding

This approach, analogous to the works reviewed above, also uses hy-
perdimensional rotations to approximate displacements. However, this
technique uses products derived from the singular value decomposition
(SVD) of the homogeneous transform to realize the embedding of SE(n-
1) into SO(n). The general approach here is based upon preliminary
work reported in Larochelle et al., 2004.

Consider the space of (n x n) matrices as shown in Fig. 1. Let [T be
a (n x n) homogeneous transform that represents an element of SE(n-1).
[4] is the desired element of SO(n) nearest [T] when it lies in a direction
orthogonal to the tangent plane of SO(n) at [A]. The PD of [T] is used
to determine [A] by the following methodology.

The following theorem, based upon related works by Hanson and Nor-
ris, 1981 provides the foundation for the embedding

Theorem 1. Given any (n x n) matriz [T] the closest element of SO(n)
is given by: [A] = [U][V]T where [T] = [U][diag(s1, 82, - - - » sn)|[V]T is
the SVD of [T1.

Shoemake and Duff, 1992 prove that matrix [A] satisfies the following
optimization problem: Minimize: ||[A]—[T]||% subject to: [AL14]-[1] =
[0], where ||[4] — [T)|% = s ;(as5 —t;;)? is used to denote the Frobenius
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Tangent plane
to SO(n) at [A]

Figure 1.  General Case: SE(n-1) = SO(n).

norm. Since [A] minimizes the Frobenius norm in R™ it is the element
of SO(n) that lies in a direction orthogonal to the tangent plane of SO(n)
at [R]. Hence, [A] is the closest element of SO(n) to [T]. Moreover, for
full rank matrices the SVD is well defined and unique. Th. 1 is now
restated with respect to the desired SVD based embedding of SE(n-1)
into SO(n).

Theorem 2. For [T] € SE(n-1) and [U] & [V] are elements of the SVD
of [T] such that [T] = [U][diag(s1, 2, - - -, sn-1)][VIT if [4] = [U][V]"
then [A] is the unique element of SO(n) nearest [T].

Recall that [T], the homogenous representation of SE(n), is full rank
(McCarthy, 1990) and therefore [A] exists, is well defined, and unique.
The polar decomposition is quite powerful and actually provides the
foundation for the better known singular value decomposition. The polar
decomposition theorem of Cauchy states that “a non-singular matrix
equals an orthogonal matrix either pre or post multiplied by a positive
definite symmetric matrix”, see Halmos, 1958. With respect to our
application, for [T] € SE(n-1) its PD is [T] = [P][Q], where [P] and [Q)]
are (nxn) matrices such that [P] is orthogonal and [Q] is positive definite
and symmetric. Recalling the properties of the SVD, the decomposition
of [T yields [U][diag(s1, 52, - - - 8n—1)][V]¥, where matrices [U] and [V]
are orthogonal and matrix [diag(s1, s2, - . - , Sn—1)] is positive definite and
symmetric. Moreover, it is known that for full rank square matrices that
the polar decomposition and the singular value decomposition are related
by: [P] = [U][V]T and [Q] = [V][diag(s1, S2, - - - 5n-1)][V]T, Faddeeva,
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1959. Hence, for [A] = [U][V]T it is known that [A] = [P] and the
PD yields the same element of SO(n). The result being the following
theorem that serves as the basis for the PD based embedding.

Theorem 3. If [T] € SE(n-1) and [P] & Q] are the PD of [T] such that
[T] = [P][Q] then [P)] is the unique element of SO(n) nearest [T].

2.1 The Characteristic Length & Metric

A characteristic length is employed to resolve the unit disparity be-
tween translations and rotations. Investigations on characteristic lengths
appear in Angeles, 2005; Etzel and McCarthy, 1996; Larochelle and Mec-
Carthy, 1995; Kazerounian and Rastegar, 1992; Martinez and Dulffy,
1995. The characteristic length used here isR = Z%Ii where L is the max-
imum translational component in the set of displacements at hand. This
characteristic length is the radius of the hypersphere that approximates
the translational terms by angular displacements that are < 7.5(deg). It
was shown in Larochelle, 1999 that this radius yields an effective balance
between translational and rotational displacement terms. Note that the
metric presented here is not dependent upon this particular choice of
characteristic length.

It is important to recall that the PD based embedding of SE(n-1)
into SO(n) is coordinate frame and unit dependent. However that this
methodology embeds SE(n-1) into SO(n) and that a bi-invariant metric
does exist on SO(n). One useful metric d on SO(n) can be defined using
the Frobenius norm as,

d = [~ [AlA) Il (1)

where [A;] and [As] of elements of SO(n). It is straightforward to verify
that this is a valid bi-invariant metric on SO(n), see Schilling and Lee,
1988.

2.2 A Finite Region of SE(3)

In order to yield a left invariant metric we build upon the work of
Kazerounian and Rastegar, 1992 in which approximately bi-invariant
metrics were defined for a prescribed finite rigid body. Here, to avoid
cumbersome volume integrals over the body a unit point mass model for
the moving body is used. Proceed by determining the center of mass
¢ and the principal axes frame [PF| associated with the n prescribed
locations where a unit point mass is located at the origin of each location:

1 -
g = -Y d (2)

nzl
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where J; is the translation vector associated with the ith location (i-e.
the origin of the ith location with respect to the fixed frame). Next,
define [PF] with origin at ¢ and axes along the principal axes of the n
point mass system by evaluating the inertia tensor [1] associated with
the n point masses,

Uy Uy U3 C
pr) = [0 0T 3)
where 7, are the principal axes associated with [I] Greenwood, 2003
and the directions v; are chosen such that [PF] is a right-handed system.
Note that the principal frame is not dependent on the orientations of the
frames at hand. However, the metric is dependent on the orientations
of the frames. For a set of n locations in a finite region of SE(3) the
procedure is:

1 Determine [PF] associated with the n displacements.

2 Determine the relative displacements from [PF] to each of the n
locations.

3 Determine the characteristic length R associated with the n relative
displacements and scale the translation terms in each by %

4 Compute the elements of SO(4) associated with [PF] and each of
the scaled relative displacements using the polar decomposition.

5 The magnitude of the ith displacement is defined as the distance
from [PF] to the #** scaled relative displacement as computed via
Eq. 1. The distance between any 2 of the n locations is similarly
computed via the application of Eq. 1 to the scaled relative dis-
placements embedded in SO(4).

Since ¢ and [PF] are invariant with respect to both the choice of coordi-
nate frames as well as the system of units (Greenwood, 2003) the relative
displacements determined in step 2 are left invariant and it follows that
the metric is also left invariant.

3. Case Study

Consider the 4 spatial locations in Table. 1 and shown in Fig. 2 along
with the fixed reference frame [F] where the x-axes are shown in
red, the y-axes in green, and the z-axes in blue. Their centroid is
¢ = [0.7500 1.5000 0.4375]7. Next, the principal axes directions are
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Table 1. Four Spatial Locations.
# x y z__ 0 (deg) ¢ (deg) ¢ (deg) [[T]l
1 000 000 000 00 0.0 00  2.5981
5 000 100 025 150 150 0.0 25701
| 3 100 200 050 450  60.0 0.0  2.7953
| 4 200 300 100 450  80.0 0.0  2.8057

[PF] =

—0.5692 0.8061
—0.7807 —0.5916 —0.2012 1.5000

determined to define the principal frame,

—0.2578 0.0117  0.9661

0

0 0

—0.1617 0.75000

0.4375

1

The original locations and the principal frame

Figure 2.

The 4 Spatial Locations.

shown in Fig. 2. The characteristic length is R = 2&%7_1_%_ = 13.0695 and
the magnitudes of the displacements are listed in Table 1. Interestingly,
the magnitude of the first displacement is not zero. This is because the
relative displacement from the principal frame to the first location is
non-identity and that the magnitudes of all displacements are computed
with respect to the principal frame.
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4. Conclusions

We have presented a metric on SE(n). This metric is based on embed-
ding SE(n) into SO(n+1) via the polar decomposition of the homoge-
neous transform representation of SE(n). It was shown that this method
determines the element of SO(n+1) nearest the given element of SE(n).
A bi-invariant metric on SO(n-+1) is then used to measure the distance
between any two spatial displacements SE(n). The results is a PD based
metric on SE(n) that is left-invariant. Such metrics have applications
in motion synthesis, robot calibration, motion interpolation, and hybrid
robot control.
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